

A Derangement of the Brain Wound Healing Process May Cause Some Cases of Alzheimer's Disease

STEVEN LEHRER AND PETER H. RHEINSTEIN

Abstract: A derangement of brain wound healing may cause some cases of Alzheimer's disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. Our hypothesis -- Alzheimer's disease is brain wound healing gone awry at least in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process.

[*Discovery Medicine* 22(119):43-46, August 2016]

Various causes have been postulated for Alzheimer's disease. Among them are genetic defects, extracellular amyloid beta (A β) deposits, tau protein abnormalities, reduced acetylcholine synthesis, vascular abnormalities, and mitochondrial dysfunction (Querfurth and LaFerla, 2010; Carvalho *et al.*, 2015; Coyle *et al.*, 1983). Another cause of some cases may be a derangement of the brain wound healing process.

Steven Lehrer, M.D.,¹ and Peter H. Rheinstein, M.D., J.D., M.S.,²
1 Fermata Pharma, Inc., 30 West 60th St., New York, NY 10023, USA.
2 Severn Health Solutions, 621 Holly Ridge Rd., Severna Park, MD 21146, USA.

Corresponding Author: Steven Lehrer, M.D.
(steven@fermatapharma.com).

Wound Healing in the Brain

Recent studies of implanted electrodes have elucidated differences in brain wound healing versus wound healing in non-neuronal tissue (Stronek and Reichert, 2008). Implanted electrodes have many therapeutic uses. For example, they can monitor neural signals in the brain and can be used for the treatment of Parkinson's disease, obsessive-compulsive disorder, Tourette syndrome, and the control of prosthetics in patients with full to partial paralysis. But chronically implanted sensors and electrodes frequently, unpredictably fail as a result of complications arising from the wound healing response.

Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. The initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. The functioning of the blood brain barrier, as well as the action of microglia and astrocytes, makes brain wound healing unique. Most important, the repair of a wound in the central nervous system is not followed by neural regeneration.

Four Stages of Wound Healing

1. *Hemostasis.* In non-brain tissue, platelet adhesion and activation occur, with fibrin formation, to stem blood flow with a hemostatic plug. In brain tissue, a similar process occurs. In Alzheimer's disease, a prothrombotic state is associated with increased clot formation, decreased fibrinolysis, and elevated levels of coagulation factors and activated platelets. Abnormal deposition and persistence of fibrinogen may result from Amyloid β -fibrinogen binding and altered hemostasis (Cortes-Canteli *et al.*, 2012). The characteristic

breach of the blood brain barrier in Alzheimer's disease probably occurs at this stage of brain wound healing (Bell and Zlokovic, 2009).

2. *Inflammation.* In non-brain tissue, macrophages mediate inflammation. In brain tissue, microglia are the principal mediators. Microglia, the immune cells of the brain, are implicated in cascades leading to inflammation, neuronal loss and cognitive decline in Alzheimer's disease (Crehan *et al.*, 2012). Inflammation is a fundamental feature of both wound healing and Alzheimer's disease.

3. *Repair.* In partial thickness skin wounds, where only the epidermis is damaged and the basement membrane remains intact, the wound can heal by keratinocyte regeneration and migration alone. In the brain, microglia and macrophages migrate into the lesion, secreting cytokines and growth factors. Macrophages, microglia, and astrocytes are strongly involved in the pathogenesis of Alzheimer's disease, as well as HIV-associated dementia and multiple sclerosis (Minagar *et al.*, 2002).

4. *Remodeling.* In skin, fiber alignment and wound contraction take place, along with tissue strengthening. In brain wound healing, gliosis occurs. Gliosis is a non-specific reactive change of glial cells in response to damage to the central nervous system. In most cases, gliosis involves the proliferation or hypertrophy of several different types of glial cells, including astrocytes, microglia, and oligodendrocytes. Gliosis is a well documented finding in Alzheimer's disease (Glylys *et al.*, 2004). The brain atrophy of Alzheimer's disease could correspond with skin wound contraction.

Androgen Deprivation Therapy

Androgen deprivation therapy (ADT) increases the risk of Alzheimer's disease in men treated for prostate cancer, and there is a statistically significant increased risk of Alzheimer's disease with increasing duration of ADT (Nead *et al.*, 2015). Moreover, endogenous testosterone inhibits the cutaneous wound healing response in males (Ashcroft and Mills, 2002). Therefore, ADT could enhance the brain wound healing process and increase Alzheimer's disease susceptibility.

Aspirin and Non-steroidal Anti-inflammatory Drugs (NSAIDs)

Aspirin and NSAIDs significantly reduce the risk of Alzheimer's disease but have no value as a treatment (Jaturapatporn *et al.*, 2012; Fotuhi *et al.*, 2008). One explanation for this discrepancy is that because of tight

plasma protein binding, the amount of NSAID reaching the brain is quite low: enough to prevent Alzheimer's disease but not enough to treat it (Parepally *et al.*, 2006; Lehrer, 2014).

A second explanation is the inhibitory effect of aspirin and NSAIDs on wound healing (Lee, 1968). Aspirin inhibits healing by reducing 12-hydroxyheptadecatrienoic acid production (Yokomizo *et al.*, 2013; Liu *et al.*, 2014; Gus-Brautbar and Panigrahy, 2014). In animal models, systemic ibuprofen has an anti-proliferative effect on wound healing, resulting in decreased numbers of fibroblasts, weakened breaking strength, reduced wound contraction, delayed epithelialization, and impaired angiogenesis (Guo and Dipietro, 2010). Both aspirin and NSAIDs act early enough to stop the brain wound healing process from initiating and prevent Alzheimer's disease from starting. But by the time Alzheimer's disease becomes clinically apparent, wound healing is too far along to be affected by these drugs.

Intranasal Insulin

Intranasal insulin has two potentially antagonistic effects in Alzheimer's disease, promotion of both brain insulin signaling and brain inflammation.

Insulin signaling is impaired in Alzheimer's disease (Candeias *et al.*, 2012). Moreover, insulin treatment has a potent protective effect on spatial learning and memory ability of diabetic rats (Yang *et al.*, 2015).

In the SNIFF Trial, Claxton *et al.* (2015) reported that Long-Acting Intranasal Insulin Detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease. But insulin glulisine (Apidra) failed to have an acute impact on cognition in ApoE4 carriers with mild-moderate Alzheimer's disease. Other intranasal insulin preparations were also ineffective in ApoE4 carriers in four trials (Rosenbloom *et al.*, 2014; Reger *et al.*, 2006). ApoE4 carriers demonstrated a relative decline in verbal memory when treated with regular recombinant human insulin (Novolin) (Reger *et al.*, 2008). Only insulin detemir (Levemir) in the SNIFF trial improved verbal episodic memory in ApoE4 carriers, although it had no effect on working memory (Claxton *et al.*, 2015).

ApoE4 carriers may not respond to intranasal insulin because of increased inflammation. ApoE4 exacerbates neuro-inflammation, much more so than apoE3 (Guo *et al.*, 2004).

Topical insulin promotes wound healing (Pierre *et al.*,

1998) by augmenting wound inflammation, especially the quantity and function of macrophages (Chen *et al.*, 2012). The brain insulin resistance in Alzheimer's disease, sometimes called type III diabetes, may be due to brain inflammation, since chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance (Xu *et al.*, 2003).

Rapamycin (INN/USAN Sirolimus)

Rapamycin (Rapamune) is a macrolide immunosuppressant drug which is administered after transplantation to prevent organ rejection. In the brain, rapamycin benefits neuronal survival and plasticity, contributing to memory improvement (Santos *et al.*, 2011). Some studies suggest that rapamycin might be a treatment for Alzheimer's disease (Caccamo *et al.*, 2010; Spilman *et al.*, 2010). If so, rapamycin's therapeutic benefit could be due to one of its principal side effects, impairment of wound healing (Schaffer *et al.*, 2007; FDA and Pfizer, 2001).

In mice, the brain concentration of rapamycin after intraperitoneal administration is 2% of the liver and plasma concentration with very low passive penetration of the blood brain barrier (Meikle *et al.*, 2008). Therefore, rapamycin might be administered intranasally to achieve an effective therapeutic brain dose.

Chronic Traumatic Encephalopathy

Some professional football players and boxers often develop symptoms of impaired cognition, mood, behavior, and motor skills. Repeated head trauma is followed by a lag period before Chronic Traumatic Encephalopathy (CTE) symptoms become evident. The pathologic changes are similar to Alzheimer's disease but show a predominance of tau protein deposition over amyloid (Yi *et al.*, 2013). Some cases of CTE, like Alzheimer's disease, might result from the brain wound healing response.

Conclusion

We propose that some cases of Alzheimer's disease are due to the initiation of the brain wound healing process, often in the absence of any actual wound. The pathologic hallmarks of Alzheimer's disease, plaques and tangles, are a non-specific result of the disease process, not a cause (Lee *et al.*, 2007). Alzheimer's begins in the hippocampus and rhinencephalon, then spreads throughout the brain (Braak *et al.*, 2006). The hippocampus and rhinencephalon connect to the olfactory nerves and olfactory bulbs, which could serve as a portal of entry for substances that trigger the wound heal-

ing process. Wound healing is beneficial for skin and bone, but might not always be conducive to normal brain function or cognition. Once the wound healing process begins, brain deterioration proceeds unimpeded.

Our hypothesis -- Alzheimer's disease is brain wound healing gone awry in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might also be done. Although autopsy studies are cross-sectional rather than longitudinal, they can be used to gauge Alzheimer's disease progression (Serrano-Pozo *et al.*, 2011).

Better understanding of brain wound healing may lead to an effective treatment for Alzheimer's disease.

Disclosure

Dr. Lehrer has filed a patent application for nasal NSAID treatment of Alzheimer's disease.

References

Ashcroft GS, Mills SJ. Androgen receptor-mediated inhibition of cutaneous wound healing. *J Clin Invest* 110(5):615-624, 2002.

Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. *Acta Neuropathol* 118(1):103-113, 2009.

Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del TK. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. *Acta Neuropathol* 112(4):389-404, 2006.

Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. *J Biol Chem* 285(17):13107-13120, 2010.

Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, Placido AI, Perry G, Moreira PI. The impairment of insulin signaling in Alzheimer's disease. *IUBMB Life* 64(12):951-957, 2012.

Carvalho C, Correia SC, Perry G, Castellani RJ, Moreira PI. Cerebrovascular and mitochondrial abnormalities in Alzheimer's disease: a brief overview. *J Neural Transm (Vienna)*, epub ahead of print, Jan. 22, 2015.

Chen X, Liu Y, Zhang X. Topical insulin application improves healing by regulating the wound inflammatory response. *Wound Repair Regen* 20(3):425-434, 2012.

Claxton A, Baker LD, Hanson A, Tritschuh EH, Cholerton B, Morgan A, Callaghan M, Arbuckle M, Behl C, Craft S. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia. *J Alzheimers Dis* 44(3):897-906, 2015.

Cortes-Canteli M, Zamolodchikov D, Ahn HJ, Strickland S, Norris EH. Fibrinogen and altered hemostasis in Alzheimer's disease. *J Alzheimers Dis* 32(3):599-608, 2012.

Coyle JT, Price DL, DeLong MR. Alzheimer's disease: a disorder of cortical cholinergic innervation. *Science* 219(4589):1184-1190, 1983.

Crehan H, Hardy J, Pocock J. Microglia, Alzheimer's disease, and complement. *Int J Alzheimers Dis* 2012:983640, 2012.

FDA and Pfizer. Rapamune package insert. *Drugs@FDA*. http://www.accessdata.fda.gov/drugsatfda_docs/nda/99-21083A.cfm, 2001.

Fotuhi M, Zandi PP, Hayden KM, Khachaturian AS, Szekely CA, Wengreen H, Munger RG, Norton MC, Tschanz JT, Lyketsos CG. Better cognitive performance in elderly taking antioxidant vitamins E and C supplements in combination with nonsteroidal anti-inflammatory drugs: the Cache County Study. *Alzheimers Dement* 4(3):223-227, 2008.

Guo L, LaDu MJ, Van Eldik LJ. A dual role for apolipoprotein e in neuroinflammation: anti- and pro-inflammatory activity. *J Mol Neurosci* 23(3):205-212, 2004.

Guo S, Dipietro LA. Factors affecting wound healing. *J Dent Res* 89(3):219-229, 2010.

Gus-Brautbar Y, Panigrahy D. Time heals all wounds -- but 12-HHT is faster. *J Exp Med* 211(6):1008, 2014.

Glylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM. Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. *Am J Pathol* 165(5):1809-1817, 2004.

Jaturapatporn D, Isaac MG, McCleery J, Tabet N. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer's disease. *Cochrane Database Syst Rev* 2:CD006378, 2012.

Lee HG, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA. Amyloid- β in Alzheimer disease: the null versus the alternate hypotheses. *J Pharmacol Exp Ther* 321(3):823-829, 2007.

Lee KH. Studies on the mechanism of action of salicylate. II. Retardation of wound healing by aspirin. *J Pharm Sci* 57(6):1042-1043, 1968.

Lehrer S. Nasal NSAIDs for Alzheimer's disease. *Am J Alzheimers Dis Other Demen* 29(5):401-403, 2014.

Liu M, Saeki K, Matsunobu T, Okuno T, Koga T, Sugimoto Y, Yokoyama C, Nakamizo S, Kabashima K, Narumiya S, Shimizu T, Yokomizo T. 12-Hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. *J Exp Med* 211(6):1063-1078, 2014.

Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski DJ. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. *J Neurosci* 28(21):5422-5432, 2008.

Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. *J Neurol Sci* 202(1-2):13-23, 2002.

Nead KT, Gaskin G, Chester C, Swisher-McClure S, Leeper NJ, Shah NH. Androgen deprivation therapy and future Alzheimer's disease risk. *J Clin Oncol*, epub ahead of print, Dec. 7, 2015.

Parepally JM, Mandula H, Smith QR. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indomethacin. *Pharm Res* 23(5):873-881, 2006.

Pierre EJ, Barrow RE, Hawkins HK, Nguyen TT, Sakurai Y, Desai M, Wolfe RR, Herndon DN. Effects of insulin on wound healing. *J Trauma* 44(2):342-345, 1998.

Querfurth HW, LaFerla FM. Alzheimer's disease. *N Engl J Med* 362(4):329-344, 2010.

Reger MA, Watson GS, Frey WH, Baker LD, Cholerton B, Keeling ML, Belongia DA, Fishel MA, Plymate SR, Schellenberg GD, Cherrier MM, Craft S. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. *Neurobiol Aging* 27(3):451-458, 2006.

Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR, Cherrier MM, Schellenberg GD, Frey WH, Craft S. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. *J Alzheimers Dis* 13(3):323-331, 2008.

Rosenbloom MH, Barclay TR, Pyle M, Owens BL, Cagan AB, Anderson CP, Frey WH, Hanson LR. A single-dose pilot trial of intranasal rapid-acting insulin in apolipoprotein E4 carriers with mild-moderate Alzheimer's disease. *CNS Drugs* 28(12):1185-1189, 2014.

Santos RX, Correia SC, Cardoso S, Carvalho C, Santos MS, Moreira PI. Effects of rapamycin and TOR on aging and memory: implications for Alzheimer's disease. *J Neurochem* 117(6):927-936, 2011.

Schaffer M, Schier R, Napirei M, Michalski S, Traska T, Viebahn R. Sirolimus impairs wound healing. *Langenbecks Arch Surg* 392(3):297-303, 2007.

Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. *Cold Spring Harb Perspect Med* 1(1):a006189, 2011.

Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. *PLoS One* 5(4):e9979, 2010.

Stroneck JD, Reichert WM. Overview of wound healing in different tissue types. In: *Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment*. (Ed. Reichert WM). pp3-40. CRC Press, Boca Raton, FL, USA, 2008.

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. *J Clin Invest* 112(12):1821, 2003.

Yang J, Song Y, Wang H, Liu C, Li Z, Liu Y, Kong Y. Insulin treatment prevents the increase in D-serine in hippocampal CA1 area of diabetic rats. *Am J Alzheimers Dis Other Demen* 30(2):201-208, 2015.

Yi J, Padalino DJ, Chin LS, Montenegro P, Cantu RC. Chronic traumatic encephalopathy. *Curr Sports Med Rep* 12(1):28-32, 2013.

Yokomizo T, Liu M, Saeki K. Aspirin delays skin wound healing by reducing the production of 12-hydroxyheptadecatrienoic acid, a ligand for BLT2 receptor. *FASEB J* 27(meeting abstract):813-814, 2013.